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Abstract 

As paradigm of complex behavior, multifractals describe the underlying geometry of self-similar objects or 

processes. Building on the connection between entropy and multifractals, we speculate here that the 

generalized dimension of geodesic trajectories in General Relativity recovers the four-dimensionality of 

classical spacetime. 

Key words: multifractals, measure theory, Rényi entropy, generalized dimension, geodesic trajectories, 

relativistic spacetime.  

 

“…most facts about Nature cannot be expressed in terms  

of the contrast between “black and white”, “true and false”, or “1 and 0”. 

Therefore, those aspects cannot be illustrated by sets; they demand more  

 general mathematical objects that succeed to embody the idea of “shades  

 of gray”. Those more general objects are called measures”. 

From C. J. G. Evertsz and B. B. Mandelbrot, “Multifractal Measures” in  

 Chaos and Fractals, New Frontiers of Science, Springer-Verlag 1992.  
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1. Introduction 

A self-evident proposition of experimental physics is that observations are based on 

measurements. Any measurable quantity can be expressed in units of mass ( )M , length 

( )L and time ( )T  according to 

  x M L T    (1) 

In natural units ( 1c  ), time and length units coincide, while mass is reciprocal of 

length or time. Accordingly, (1) turns into 

  x L  (2) 

in which 

        (3) 

The exponent (3) characterizes the length dimension of quantity x  and relates to the 

fractal or the Hausdorff dimension ( )HD . Let the length extent L  of x  be covered with a 

mesh of identical boxes of size l L . The number of boxes required to cover L  scales 

with the ratio l L   as in 

 ( ) HD
N   

  (4) 

The Hausdorff dimension satisfies the inequality 

 T Hd D d   (5) 
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where Td  stands for the topological dimension (zero for a point, 1 for a continuous and 

smooth curve, 2 for a continuous smooth surface and so on), whereas d  is the dimension 

of the embedding space. The condition HD d  means, for example, that no curve, no 

matter how convoluted, can do more than fill the space in which is embedded. The lower 

limit of (5) states the obvious fact that any object must at least have a dimension equal to 

that of its elements. 

The most straightforward example of a one-dimensional object having  0,1HD    is the 

Cantor set. The Sierpinski carpet is a generalization of the Cantor set in two dimensions 

and its Hausdorff dimension is  1,2HD  [2-4]. The fundamental property of these 

fractals is self-similarity, or “shape invariance” under rescaling of   as in 

 , r
r

  R  (6) 

Self-similarity is closely related to the concept of covariance in field theory, the behavior 

of the Renormalization Group flow as well as to the geometry of strange attractors 

defining the onset of turbulence in fluid dynamics [5-7].  It can be also shown that self-

similarity underlies the physics of self-organized criticality (SOC), a universal 

manifestation of complex dynamics in large systems outside equilibrium [10]. 

Unlike simple fractals like the Cantor set and Sierpinski carpet, there are objects where 

scaling (4) requires two or more dimensions and are referred to as multifractals. These 

are considered mixtures of fractal objects, each characterized by its Hausdorff dimension. 

Self-similarity of multifractals is accordingly defined in terms of a multifractal spectrum 

describing the overall distribution of its fractal dimensions. Next section elaborates on 

these concepts and similar other tools of multifractal analysis.  
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2. Brief overview of multifractal analysis 

In the general context of complex dynamics, multifractal analysis is considered a theory 

of self-similar measures [1]. A measure is defined as function that assigns a number to 

certain subsets of a given set: the number is said to represent the measure of the set. The 

basic properties of measures are extensions of the familiar geometrical concepts of length, 

area, and volume, so that - for example - the measure of the union of two disjoint sets is 

the sum of the measures of the two sets, and the measure of the empty set is zero. Roughly 

speaking, a self-similar measure is a measure whose geometrical attributes stay 

unchanged upon arbitrary scaling operations.   

To characterize a multifractal whose support has linear extent L , let the set be covered 

with a mesh of identical rectangular boxes of size l . Let iP  represent the probability 

measure defined inside the thi  box so that iP  vanishes for empty boxes [2-3]. A careful 

distinction must be drawn between the concept of probability measure iP   in the context 

of multifractals and the thermodynamic concept of probability. The former quantifies the 

relative frequency with which the thi  box is “visited” by the multifractal, the latter 

quantifies the number of micro-states which realize a given macro-state. 

By analogy with equilibrium statistical mechanics, multifractal analysis is based on a 

partition function defined as [1-3] 

 
1

( , )
N

q

q i

i

Z l L P


  (7) 
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The partition function (7) consists of the sum over all boxes of the thq  order of box 

probabilities, where q    . One can further simplify (7) by introducing the 

dimensionless number l L   so that   

 ( , ) ( )q qZ l L Z   (8) 

Note that for 1q  , the partition function satisfies the normalization condition  

 1( ) 1Z    (9) 

The number of boxes needed to cover the set can be alternatively defined through the 

power-law scaling   

 ( )N   ~ HD    (10) 

As indicated in the previous section, HD  denotes the Hausdorff dimension of the set, 

which is adequate for characterization of mono-fractals. In general, the quantitative 

description of multifractal measures requires replacing HD  with a continuous Lipschitz-

Hölder (LH) exponent   according to 

 iP  ~   ,    min max0 ,       (11) 

By analogy with (10), the number of boxes of size   having the LH exponent   is given 

by 

 ( )N   ~ ( )f     (12) 
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where the distribution of LH exponents follows the multifractal spectrum ( )f  . The 

meaning of (12) is that there are infinitely many subsets of boxes having the LH exponent 

  in the limit 0  .  

Denoting the number of boxes for which i d       as ( )N d   , the contribution of 

the subset of boxes  with [ , ]i d      to the partition function is ( )( )qN d

     and 

thus  

 ( ) ( ) ( )q

qZ N d

       (13) 

By (12) and (13), we obtain   

 ( )( ) q f

qZ d      (14) 

Assume now that each box of dimension   is rescaled by a box-dependent factor jr . Let 

jp  denote the probability associated with the thj  rescaled version of the original box 

whose dimension is   

 j

jr


   (15) 

so that 

 
1

1

N

j

j

p


  (16) 
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The rescaling process can be recursively continued an arbitrary number of times. Each 

rescaled version of the original partition carries an amount jp  of the total measure. The 

similarity property of the rescaling process leads to the condition [2] 

 , ( ) ( )q

q j j q

j

Z p Z
r


   (17) 

where , ( )q jZ   is the rescaled value of the partition function (14). Additivity of (14) implies 

that  

 ,

1

( ) ( )

N

q q j

j

Z Z 


  (18) 

Considering the above relationships, one arrives at the condition [2] 

 
( )

1

1
N

q q

j j

j

p r



  (19) 

in which 

 ( ) ( )q f q     (20) 

An important result of multifractal analysis is that, for 0  , the partition function 

follows the power law [2] 

 
( 1)

( ) qq D

qZ  


  (21) 
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where qD  represents the order q  generalized dimension. The factor ( 1)q  is explicitly 

pulled out of the exponent in (21) to enforce the normalization condition 1( ) 1Z   .  The 

topic of generalized dimensions is elaborated upon in the Appendix A.  

3. Geodesic trajectories and multifractal geometry 

Geodesic trajectories in General Relativity arise from the interval equation [8] 

 
3 3

0 0

1
dx dx

g
ds ds

 



  

  (27) 

subject to the constraint 

 
3

0

1,

0,
g g

 

 



 


 


 







   (28) 

Consider the limit of low four-velocities  

 1
dx

ds



 ,  0,1,2,3   (29) 

and compare (27) - (29) to (19). One is led to the following mapping 

 jp g g

 ,  1 2 1
2jg p q    ,  j

dx
r

ds



 ,  ( ) 2q   (30a) 

The mapping for Euclidean metric takes the form  

 
21 1

1 ( ) 1
4 4

jj
p g 


     (30b) 
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In this context, metric coefficients g   may be interpreted as analogs of multifractal 

“probability amplitudes” and the components of the four-velocity as analogs of scaling 

ratios.  

Note that it is the formal structure of the metric that determines the parameter values of 

(30).  Specifically, 1 2q   follows from (28), whereas ( ) 2q   follows from the quadratic 

form of the product of four-velocities, which are interpreted as scaling ratios by (15) and 

(19). The condition (29) is so chosen as to reflect a scaling 1r  , which means a 

“contraction” as opposed to a “dilation” for 1r  . This is the pedagogical way the idea of 

unidimensional Cantor sets is introduced in the literature. 

Replacing (30) in (19) and accounting for (A5) recovers the four-dimensionality of 

classical spacetime in the form 

 1
2

4D   (31) 

It is important to understand that the derivation of (31) does not amount to a circular 

argument. One can equally well start from the differential of the line element in 4d 

dimensions and arrive at the same result, since each term of (27) in higher dimension 

spacetime is still the product of metric coefficient g  with the square of the ratio in 

differential coordinates.    

4. Concluding remarks 

It is well known that the union of space and time forms the basis of Special Relativity and 

is carried over to General Relativity. The four-dimensionality of relativistic spacetime in 

the classical theory of gravitation is therefore assumed from the outset. 
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In contrast, the approach taken here derives the existence of four spacetime dimensions 

from the fundamental connection between continuous dimensionality and entropy in 

multifractal geometry. 

Applying this connection to the expression of the line element in General Relativity leads 

to a derivation of the number of spacetime dimensions from the entropy. The key 

observation here is that the derivation is only possible in the framework of multifractal 

geometry, where dimensions represent a manifestation of entropy.    

In closing, we bring up several observations: 

a) The analysis outlined here is strictly tentative in nature and requires independent 

scrutiny and validation. In particular, the reader must keep in mind that (30) 

represents an abstract mapping and not a term-by-term identification.  

b) It is known that deterministic chaos describes evolution that looks apparently 

random on long time scales. At least in principle, this observation may bridge the 

gap between the metric coefficients g   and the probabilistic framework of 

classical Thermodynamics. Sensitivity of geodesic trajectories to initial conditions 

and the concepts of Lyapunov instability and geodesic deviation can substantiate 

the probabilistic interpretation of the spacetime metric [Appendix B, 12-14].  

c) Combined use of (31) and (A3) indicates that the limit 0   matches the 

transition 1 2d D . It follows that the dimensional deviation 4 1d     may be 

interpreted as a scale-dependent and continuous parameter defining the concept 

of minimal fractal manifold [6]. 
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d) (A4) shows that the Rényi entropy asymptotically diverges in the classical 

spacetime limit 0  . This finding lends support to the idea that (A4) reflects, in 

fact, the second law of Thermodynamics.        

e) There is a fundamental distinction between Rényi entropy and the Beckenstein 

entropy, the latter referring to the event horizon of Black Holes. While Rényi 

entropy relates to the number of fuzzy bits (“shades of grey”) in a given spacetime 

region, Beckenstein entropy relates to the number of binary bits (1 or 0) 

holographically encoded on the horizon surface [11]. Digging deeper into this 

difference in concepts is beyond the scope of the paper. 

APPENDIX A 

Generalized dimensions are associated with the concept of Rényi entropy which is 

defined as [2, 9, 15] 

 
1

1
log

1

N

q

q j

j

S p
q 




  (A1) 

(A1) recovers the standard thermodynamic entropy of a discrete probability distribution 

in the limit 1q  , i.e.  

 1

1

log
N

j j

j

S p p


   (A2) 

The relationship between the generalized dimensions qD  and Rényi entropy is given by 

 
0

lim
log

q

q

S
D

 
   (A3) 
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or 

 
0

lim( ) exp( )qD

qS






      (A4) 

For 0q  , one obtains 0 HD D  and the generalized entropy coincides with the Hausdorff 

dimension. The information dimension 1D  corresponds to 1q   and the associated 

entropy 1S  describes the loss of information in the time evolution of chaotic systems. 

Likewise, the correlation dimension 2D  encodes the probability of finding two members 

of the multifractal set within a distance ( )O  . In general, the relevant dimensions of a 

multifractal are ordered as in 1 2HD D D  . 

Comparative inspection of (14) and (21) reveals the following correspondence [2]  

 ( ) (1 ) ( )qq q D f q       (A5) 

(A5) acts as a Legendre transform between parameters , qq D  and , ( )f  . This 

transformation enables a one-to-one mapping between multifractal geometry, 

Thermodynamics and Lagrangian field theory [10]. 

APPENDIX B 

Let 0  represent a fixed geodesic whose coordinates are function of the distance s  

measured along it.  Denote a nearby geodesic by  . Let the geodesic normal to 0  be 

called 1  and assume that 1  intersects   at point P . Let the distance between 0  and 

measured along 1  at P  be denoted as ( )s . It can be shown that ( )s  satisfies the so-

called Jacobi equation [13-14] 
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2

2

( )
( ) ( )

d s
K s s

ds


   (B1) 

 ( )s s g  (B2) 

in which ( )K s  is the Gaussian curvature at P . The unavoidable sensitivity to initial 

conditions in the evolution of geodesics can be characterized by the divergence of the 

affine parameter ( )s  along s . The equation (B1) may be used to define the Gaussian 

curvature at P . The neighboring geodesic   is pulled back towards 0  if 0K  , or pushed 

away from 0  if 0K  . It follows that the Gaussian curvature represents a local measure 

of geodesic instability. On a spherical surface, 0K   means stability whereas 0K   

describes instability. The logarithm of the square root of the curvature takes on the role 

of a local Lyapunov exponent [13] 

 log ( ) ( )K s s  (B3) 

In turn, the so-called Kolmogorov entropy relates to the spectrum of Lyapunov exponents 

i  of a system and quantifies the amount of information lost or gained during its evolution 

[13-14]. It is given by the sum of all positive Lyapunov exponents averaged over a given 

region of the phase space   [12]. The Kolmogorov entropy associated with the system of 

nearby geodesics 0  and  can be computed as 

 
0

log( )

i

K i i

i

S d K d


  
 



     (B4) 

where d  stands for the differential measure of  . 
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Taken together, (B2), (B3) and (B4) set the stage for a probabilistic interpretation of the 

metric g  , induced by the sensitivity of geodesics to initial conditions. 
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